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A new analytic model describing a family of vortices has been developed to study 
some of the axisymmetric vortex breakdown and reconnection fluid dynamic 
processes underlying body-vortex interactions that are frequently manifested in 
rotorcraft and propeller-driven fixed-wing aircraft wakes.  The family of vortices 
incorporates a wide range of prescribed initial vorticity distributions -- including 
single or dual-core vorticity distributions.  The result is analytical solutions for the 
vorticity and velocities for each member of the family of vortices.   This model is of 
sufficient generality to further illustrate the dependence of vortex reconnection and 
breakdown on initial vorticity distribution as was suggested by earlier analytical 
work.  This family of vortices, though laminar in nature, is anticipated to provide 
valuable insight into the vortical evolution of large-scale rotor and propeller wakes.   

 
 

Nomenclature 
 

! 

r  Radial coordinate, origin at filament axis, m 

! 

r
•  Nondimensional radial coordinate, 

! 

r
•

= r rc0  

! 

ro  Spherical finite-volume source terms’ “effective” initial radius, m 

! 

rc0  “Finite core” vortex filament core size radius (at time equal to zero), m 
Re Vortex Reynolds number, 

! 

Re = " #  

! 

t  Time, sec 

! 

t
•  Nondimensional time parameter, 

! 

t
•

= "t rc0
2  

! 

V  Velocity vector, cylindrical coordinates, 

! 

V = vr v" vz[ ] , m/sec 

! 

Vp Finite core vortex axial flow “wave front” propagation velocity, m/sec 
z Axial (along vortex filament axis) coordinate, origin at intersection of filament segments' plane of 

symmetry and filament axis, m 

! 

z
•  Nondimensional axial coordinate, 

! 

z
•

= z rc0  

! 

zw  Wave front boundary, m 
γ Vortex filament initial circulation strength, m2/sec 
Γ Vortex circulation, m2/sec 
ν Kinematic viscosity, m2/sec 
θ Angular coordinate, radians 

! 

"  Vorticity vector, 

! 

" = "r "# "z[ ] , 1/sec 
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I. Introduction 
 

ORTEX filament “cutting” by solid bodies occurs in a number of real world examples for rotary-wing 
aircraft.  These examples include blade vortex interactions where vortices shed from one rotor blade 

come in close proximity with another blade, trailed tip vortex interactions with a helicopter 
airframe/tailboom in hover and low-speed flight, or, alternatively, proprotor vortex interactions with wing 
surfaces for tiltrotor aircraft in airplane-mode. There are two schools of thought regarding when such 
vortices perpendicularly intersect the vehicle airframe.  The first school of thought envisions the vortex 
“wrapping” around the solid body/surface and reconnects near-seamlessly after passing around the body.  
The second school, as discussed herein this paper, anticipates that the vortex is “cut” or “broken” such that 
the vortex circulation between “breakpoints” is, for a time, greatly diminished. There is experimental 
evidence supporting the proposition that vortex filaments can be “cut” or “broken” during perpendicular 
body-vortex interactions.  References 1-3, for example, provide qualitative discussion regarding vortex 
filament “cutting” as manifested in the form of blade vortex interactions.  References 4-7 provide similar 
qualitative discussion of vortex fuselage/airframe/wing interactions.   

 
Very little work to date has been performed, though, examining the post-cut/collision unsteady fluid 

dynamics of perpendicular, or orthogonal, vortex/solid body interactions.  Most work has either 
concentrated on the vortex/body interaction process itself (see Ref. 8) or, alternatively, has looked at 
vortex-on-vortex interactions.  A related topic is the study of ring vortices during vortex/vortex and 
vortex/body interactions; see Ref. 9, for example.  Though flow visualization techniques are of sufficient 
maturity so as to examine in detail the rotary-wing/airframe vortex filament collision process - see, in 
particular, Refs. 4, 5, and 7 -- it's clear that current rotor wake theoretical analysis is as yet inadequate to 
accurately model the vortex breakdown or reconnection processes subsequent to body/vortex interaction.  
This work summarizes an expanded analysis approach, building on the earlier work of Refs. 10-11, to study 
these vortical flow processes, i.e. post-filament-cutting during body/vortex interaction.   

 
A class of flow problem will be studied that not only encompasses the “moving boundary” class of 

problems (including the classic Lamb-Oseen vortex) but the vortex reconnection problem as well.   Integral 
to this class of flow problem is the assumption that the axial and radial velocity components, 

! 

vz and 

! 

vr , are 
not merely equal to zero (as in the case of the Lamb-Oseen vortex) but the radial velocity is instead 
proportional to the tangential velocity gradient, e.g.   
 

! 

vr "
#v$

#z  
 (1) 
Or  

  

! 

vr = l
"v#

"z  
 (2) 

 
The length scale factor,   

! 

l , is a constant -- at least within discrete spatial regions -- that transforms the 
proportional relationship of Eq. 1 to the equivalence relationship of Eq. 2.  The constant   

! 

l  has the unit of 
length, hence it being called a “length scale factor.”  This is discussed in detail in Refs. 10-11.  
Correspondingly, a second proportional relationship, based on flow continuity, can be defined for the axial 
velocity.   
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This, in turn, dictates that the vorticity can be related to the velocity components.   
 

  

! 

vz = "l#z  
 

  

! 

vr = "l#r  
 (5a-b) 

 
Applying a length-scale factor causes the convective acceleration terms to cancel out the vortex 

stretching terms and thereby reducing the Helmholtz equations to the unsteady heat conduction equation 
(Eq. 6) for the axial vorticity.   
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There is a large body of work related to the analytical solution of the heat conduction equation, 

including the use of unsteady finite-volume source modeling, that enabled the derivation of (albeit laminar) 
solutions for the vortex reconnection problem.  It is important to note, though, that the length-scale factor 
methodology, for the vortex reconnection results, yields solutions that are only approximate in nature.  
Though the Helmholtz equation for axial vorticity is exactly satisfied, for the cases where 

! 

"r # 0 and 

! 

"# $ 0, i.e. non-columnar flow, the corresponding equations for the radial and azimuthal vorticity are 
satisfied only approximately.  This will be discussed further later in the paper.   

 
Analytical descriptions of vortex filament reconnection and breakdown phenomena -- subsequent to 

“cutting” or, rather, collision with a solid body -- were first derived in Refs. 10 and 11 for four different 
initial vorticity distributions: instantaneous (line source), uniform, parabolic, and dual-core (inner core with 
negative vorticity) finite-core vortex models.  In particular the dual-core model exhibited interesting 
vortical flow characteristics not only with regards to vortex filament reconnection but it also manifested 
flow behavior analogous to that observed and (numerically) predicted for vortex breakdown.  (On the other 
hand, the dual-core model also had many limitations including providing unrealistic, nonphysical 
predictions at very small values of time.)  Though the earlier solutions provided considerable insight into 
vortex filament reconnection and breakdown, the dependence of the analytical solutions to a few specific 
instances of initial axial vorticity distribution provided an incomplete understanding of this vortical flow 
problem.   A more general approach was ideally needed.   Therefore, a new family of vortices has been 
derived in this paper that allows a more general treatment of the vortex filament breakdown and 
reconnection unsteady flow problem.  The analytical treatment, detailed in the Appendix, is, in large part, 
an extension of the earlier work of Refs. 10 and 11.    

 
 

II. Overview of Analytical Work 
 
An extended length-scale-factor methodology is introduced so as to examine a more general set of 

initial vorticity distributions for the vortex reconnection problem.  In particular, this methodology enables a 
unique superposition of vortex sources terms to define this general set of initial vorticity distributions.  This 
extended methodology can now accommodate multiple (greater than two) breakpoints as well as 
discrete/finite distributions of vorticity in addition to the earlier studied semi-infinite distributions.  Given 
this extended methodology, the vorticity and velocity distributions during vortex reconnection can now be 
described as follows  



! 

"z = #"z $ i ,roi ,ai ,bi ,r,z, t( )
i=1

N

%  

 

! 

vz = f N ,i," i ,roi ,ai ,bi ,r,z, t( )
i=1

N

#  

 
Where  
 

  

! 

f N ,i," i ,roi ,ai ,bi ,r,z, t( ) = l N ,i,z( )#$z " i ,roi ,ai ,bi ,r,z, t( )  
 
 (7a-c) 
 
Where 

  

! 

l K( )  is the length scale factor, which is defined in terms of a “local” definition of symmetrical or 
nonsymmetrical flow.  The incremental vorticity function 

  

! 

"#z K( )  is defined in the Appendix.  Infinite 
vortex segments are a special case wherein ( ) 0=Kl  and, therefore, ( ) 0=Kf .    
 
Where, in the above, the following cases apply: 

! 

N = 2  for one isolated “free” breakpoint and 

! 

N = 4  for 
two breakpoints in close proximity to each other.   The following conventions are employed in this paper.  
First, as to ordering conventions for the above arrays: 1. no vortex filament segment can cross-over 

! 

z = 0, 
i.e. 

! 

aibi " 0 , with the exception of infinite vortex filaments; 2. odd indices are assigned for 

! 

ai " 0  and, 
correspondingly, 

! 

bi " 0 , and even indices for 

! 

ai < 0  and, correspondingly, 

! 

bi < 0 ; 3. indices are assigned 
in order of increasing 

i
b ; 4. semi-infinite, where !

"=
i
b , or infinite, 

! 

ai = "#
+and 

! 

bi ="
# , segments 

are the last entries in the array; 5. infinite vortex filaments should ideally, though not as an absolute rule, be 
replaced by two semi-infinite vortex filaments segments; 6. vortex segments can partially or fully overlay 
each other (this implied superposition is fundamental to defining the general family of vortices studied in 
this paper).   The primary rationale for this particular ordering convention is the implicit ease in truncating, 
as needed from a numerical efficiency perspective, vortex filament segments that are far removed from 

! 

z = 0.  Additionally, the convention for defining the nominal initial vortex core radius is as follows: 
0c
r  is 

defined on the basis of the “upstream” far-field vortex geometry and initial conditions, i.e.  

! 

rc0  is defined 
at the limit where 

! 

z"#.   Therefore, it is possible to, even at 0!t , to prescribe different vortex core 
size distributions, albeit initially discrete in nature, for the complete ensemble of vortex segments defining 
the complete vortex filament.  To emphasize this point further, it is possible to have different core sizes 
between the upstream, 

! 

z " 0, and downstream, 

! 

z < 0, vortex filaments; nonetheless, the nominal reference 
value of 

! 

rc0  is the upstream far-field limit, i.e. 

! 

rc0A , by convention.   Therefore, the key flow parameters 
are nondimensionalized, in part, by the upstream far-field vortex core radius, 

! 

rc0A .    
 
For

! 

N = 4 , the two-breakpoint case, the following arrays are defined  
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 (8a-d) 

 
And where, for 

! 

N = 2 , the isolated “free” case, the arrays are  
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Finally, for columnar vortices, in general, 

! 

N = 2  and the arrays are  
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However, for the special case of parabolic finite core vortices (where 0=

A
! ) then the arrays are  
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In all cases the length-scale-factor function, 

  

! 

l K( ) , for multiple breakpoints, is given by  
 

  

! 

l N ,i,z( ) = rc0A "u zw # z( )  For 

! 

N = 1 
 

  

! 

l N ,i,z( ) " rc0A # signum ai( )u zw $ signum ai( )z( )  If 

! 

N " 2  and 

! 

bi ="
#  or 

! 

ai ="
+  

 

  

! 
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 If 

! 

N " 2  and 

! 

ai " bi <<#
$ 

 
 (12a-d) 
 
The above length-scale factors are based in part on the wave front boundary, 

w
z , which is a function of 

time.  The absolute displacement distance of a given wave front boundary from an individual breakpoint, or 
finite span of vorticity endpoint, is given by 

! 

zw " C + # i $rc0
i
t , where if 

! 

ai " 0  then 

! 

C = ai  otherwise 

! 

C = bi .  Note that multiple breakpoints result in multiple wave front boundaries.  Refer to the Appendix for 
more details.  The Heaviside unit step function, 

! 

u x( ) , is defined by 

! 

u x( ) = 1 for 

! 

x " 0 and 

! 

u x( ) = 0  for 

! 

x < 0.  The 

! 

signum x( )  function is defined as 

! 

signum x( ) = 1 for 

! 

x = 0 and 

! 

signum x( ) = x x  for all other 
values of 

! 

x .  
 

In many of the cases studied, spanwise symmetry about the breakpoints has been preserved.  Therefore 
many of the primary vortex filament properties such as circulation strength, source and core radius are 
equal – i.e. 

! 

"A = "B, 

! 

roA = roB = ro , and 

! 

rc0A = rc0B = rc0 .   The vortex segment span lengths can be finite 
or infinite, equal or non-equal in length, i.e. 

  

! 

l A " #
$ and 

  

! 

l B " #
$ ; for most of the work presented in this 

paper, 
  

! 

l A = l B and 
  

! 

s+ l A = "s" l B # $
" .   Spanwise symmetry is not necessarily required in the 

analysis, as will be seen for a few cases.  Additionally, the analysis can readily account for multiple 
breakpoints for various (discrete) initial axial vorticity distributions, as seen in Eq. 12a-d.   



Similar expressions as that defined for the axial vorticity and velocity, Eq. 7a-c, can readily be defined 
for the radial and tangential vorticity and velocity components, as in Eq. 13a-f, and are based on the 
principle of superposition as the axial vorticity solution is satisfied by the classic heat conduction equation 
and the remaining vorticity and velocity terms are derived on the basis of the vorticity component 
definitions and the divergence relationship – for more details refer to Refs. 10 and 11.   But, to reiterate, the 
overall solution is approximate in nature for all but columnar vortex predictions.  Derivation of the 
individual incremental vorticity and velocity expressions, i.e. 

  

! 

"#z K( ) , 
  

! 

"v# K( ) , 
  

! 

"#r K( ) , etc., is 
summarized in the Appendix.   
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vr = g N ,i," i ,roi ,ai ,bi ,r,z, t( )
i=1

N
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"# = $"# N ,i,% i ,roi ,ai ,bi ,r,z, t( )
i=1

N
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Where  
 

  

! 

g N ,i," i ,roi ,ai ,bi ,r,z, t( ) = l N ,i,z( )#$r " i ,roi ,ai ,bi ,r,z, t( )  
 
And  
 

  

! 

"#$ N ,i,% i ,roi ,ai ,bi ,r,z, t( ) = l N ,i,z( )h % i ,roi ,ai ,bi ,r,z, t( )  
 
 (13a-f) 

 
The interdependence of the finite-volume source radii, 

! 

roA  and 

! 

roB , and that of the overall vortex 
filament core radii, 

! 

rc0 , 

! 

rc0A , etc., is a particularly crucial part of the analysis, an expression for which is 
derived in the Appendix and summarized below.  (Spanwise symmetrical flow is assumed unless otherwise 
specified; therefore, for most cases studied 

oAoB
rr = .)   
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roA " 1+ 0.075u 1+ #A( ) 1+ #A( )
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"1# $A < 0.4  
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1+ "A( )roA
3 # roA

2 # rc0A
2( )

3

# 3rc0A
2

roA
2 # rc0A

2 = 0  

 (14a-b) 
 
 



III. Discussion of an Illustrative Set of Results 
 
It is beyond the scope of this paper to present more than a small fraction of the wide range of initial 

vorticity distributions – as well as discrete spanwise vortex filament geometries – which can be predicted 
by the analysis presented in this paper.   However, a select number of cases (representative examples being 
shown in Fig. 1) will be presented that focus on examining the question of the existence and underlying 
causative factors of the vortex breakdown phenomena that can, but not always, manifest itself during vortex 
reconnection.   But first, recognizing the exactness of the derived analytical solution for columnar vortices, 
the results for a few of the columnar vortices described by the analysis is next presented.   
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Fig. 1.  Examples of Initial Vorticity and Velocity Distributions describable within Family of 
Vortices: (a) and (b) vorticity and velocity for various 

! 

"A  at 

! 

"A = 0.25; (c) and (d) vorticity and 
velocity for various 

! 

"A  at 

! 

"A = 0.5 
 
A number of interesting, if not unusual, initial axial vorticity and tangential velocity distributions are 

incorporated in this family of vortices.  (Unusual that is for the non-distorted vortices typically studied.  For 
vortex filaments subjected to the strain and disruption of being “cut,” or otherwise severely subjected to 
body-vortex interactions, such distorted velocity profiles may be the norm.)   As a further aside, it should 
also be noted that the reason why the maximum nondimensional tangential velocity at 

! 

t = 0 is not always 
equal to unity is because not all the vorticity is initially captured within the core of the vortex, as, in 
general, 

! 

roA > rc0A .  Perhaps the most important attribute of this family of vortices is the ability to model 
inner regions of negative axial vorticity within the vortex core, the magnitude of which is finite at 

! 

t = 0, 
and consequently modeling counter-rotating swirling flow near the vortex centerline.  The ability to directly 
manipulate the appearance and initial extent of such inner regions of negative vorticity, with respect to the 



vortex core, is essential in studying the influence of vortex breakdown phenomena during the course of 
vortex reconnection.    

 

A. Time-Dependent Behavior of Columnar (Uncut) Vortices 
 
The columnar vortex solutions are exact solutions to the laminar viscous Helmholtz vorticity equations.  

Figure 2a-d illustrates the time evolution of columnar vortices representing opposite extremes of the initial 
vorticity and velocity distributions studied in this paper. (Note that a factor of 

! 

2"  has been applied to relate 
the nondimensional scaling employed in this paper to the conventional nondimensional scaling used for 
columnar vortices.)  The tangential velocity profiles all slowly transition from their initial profiles to a 
Lamb-Oseen vortex profile with time.  Also noteworthy, the counter-rotating swirl in the inner core 
stemming from negative vorticity can be clearly seen in Fig. 2c-d.   
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Fig. 2.  Time Evolution of Two Different Columnar Vortices: (a-b) vorticity and velocity, 07.0=
A

!  
and 25.0=

A
! , and (c-d) at 1.0!=

A
"  and 25.0=

A
!  

 
 

B. Reconnection and Breakdown for Semi-Infinite Filaments 
 
As noted in Ref. 11 the general characteristics of axisymmetric vortex reconnection is predicted to 

include: (1) diffusion-like reestablishment of vortex circulation in the intermediate region(s) between 
breakpoints, (2) manifestation of “funnel-like” instantaneous stream function contours near the individual 
vortex filament breakpoints; (3) spiral patterns for particle traces and/or streaklines (spiraling in towards 
the vortex centerline and away from the breakpoint along the filament axis), (4) complex enstrophy 
contours early in the vortex reconnection process followed later by simple diffusion-like contours.  
Depending on the initial vorticity distribution (e.g. the “dual-core” model), the vortex reconnection process 
also sometimes exhibited – for a brief period of time – vortex breakdown bubbles.   A more complete 
understanding of the conditions by which vortex breakdown phenomena are exhibited during the vortex 
reconnection process is of particular interest in this paper.    

 
The existence or nonexistence of axisymmetric vortex breakdown bubbles can be established on the 

basis of whether or not stagnation points exist along the vortex centerline in the intermediate region 
between axial flow wave front boundaries.  This can be established by the implicit relationship 
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" # vz r=0
dz

0

zw

$ % vz r=0
dz

0

zw

$ , where 

! 

"  is an error tolerance constant, such that 

! 

" > #  when the vortex 

breakdown bubble exists and 

! 

" # $  when the bubble does not exist.  This is merely an existence criterion, 
though.   It does not provide any details as to the number and location of stagnation points in the vortex 
filament or any other characteristic of the bubble formation.   

 
An alternate formulation, less computationally expensive, for approximately establishing the existence 

of vortex breakdown bubbles, which can also be used to define the duration, in terms of nondimensional 
time, 

! 

tlimit , that the vortex bubbles exist, is given by the expression 

! 

vz
t=tlimit
z = s+zw( ) 2
r"0

# 0 .  Estimates of this 

persistence of vortex bubbles during vortex reconnection is presented in Fig. 3 as a function of 
A

!  and 
A

! .  

The bubbles exist for a brief period of nondimensional time (typically 

! 

t
•
" 0.06) for those combinations of 

A
!  and 

A
!  where negative axial vorticity exists in the inner core of the vortex.   

 
Typically, though, a vortex breakdown criterion is defined in terms of swirl, or Rossby, number limits 

rather than the nondimensional time limits shown in Fig. 3.  The Rossby number, Ro, is given by the 
relationship LVRo !" , where V and L are a characteristic velocity and length respectively, and !  is a 
characteristic rotational rate of the flow.  A vortex Rossby number can be cast in following terms 

! 

Ro = vz0 rc0" , where, in general

! 

vz0 = vz r"0
and 

! 

" = v# r
r$0

.  Further, specifically, the following 

approximate definitions are employed to define Fig. 4: first, 

! 

vz0 " vz r#0 z=s 2
and, second, 

! 

" # v$ r( )
r%&rc0A z>>0

 where 

! 

" # 0.9 (the constant !  is close to unity in value so as to estimate the 

rotational rate of the portion of the vortex external to inner counter-rotating swirling flow).  Figure 4 shows 
a range of Rossby numbers, 

! 

Ro " 0.45# 0.75 , whereby the vortex breakdown disappears during the vortex 
reconnection process.  This is a unique treatment of the problem as most other research assesses the Rossby 
number limits in terms of when breakdown bubbles appear rather than disappear as is done in this study.   
 

 
Fig. 3.  Vortex Breakdown Manifestation: Nondimensional Time Boundaries 
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Fig. 4.  Vortex Breakdown Manifestation: Rossby Number Limits 
 
 

Figure 5 illustrates briefly the influence of initial vorticity distribution (refer to the Appendix for more 
details as to the analytical definition of the initial vorticity and velocity distributions for this family of 
vortices) on vortex core distribution, the rate that tangential velocity is reestablished across the intermediate 
regions between breakpoints, and the existence, or nonexistence, or vortex breakdown bubbles during the 
early stages of the vortex reconnection process.  This is presented in Fig. 5 in terms of varying the inner 
core circulation strength parameter, 

! 

"A , while keeping the values of 

! 

"A  and 

! 

t
•  constant.   
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Fig. 5.  Vortex Core (and Breakdown Bubble if Manifested) Distribution as a Function of Initial 
Vorticity Distribution ( 25.0=

A
! , 01.0=

•
t , and Re=50): (a) , (b) , 0=

A
! , i.e. “parabolic-core,” (c) 

2.0!=
A

"  
 

 
One of the key results of this paper, over that presented in Refs. 10-11 for the “dual-core” vortex model, 

is that embedding negative vorticity in the vortex core does not manifest singularities in the vortex 
circulation distribution near the vortex breakpoints at very small value of time.  Figure 6 clearly shows that 
there are no singularities exhibited at the vortex breakpoints for the new vortex model developed in this 



paper that enables an improved characterization of “dual core” vortices or any vortices containing finite 
regions of negative vorticity in their inner core.   
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Fig. 6.  Vortex Circulation Axial Distribution 

 
 
The time dependent behavior of the predicted vortex breakdown is seen in Figs. 7-8.  For 3.0!=

A
"  

and 375.0=
A

! , the vortical flow enstrophy and stream function contours are presented for a series of 
nondimensional times in Fig. 7.  Figure 8 illustrates the temporal evolution of the vortex core and 
breakdown bubble envelopes for 3.0!=

A
"  and 375.0=

A
! .    It is particularly noteworthy to point out 

that the observed persistence of the bubble manifestation in Fig. 8 is consistent with the Fig. 3 curves.    
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Fig. 7.  Enstrophy and Instantaneous Stream Function Contours 



 
 
Figure 8 illustrates in greater detail the time evolution of the predicted axisymmetric vortex breakdown 

bubbles manifested at the earliest stages of vortex reconnection (for those members of the family of 
vortices where negative axial vorticity is demonstrated).   Two mirrored vortex breakdown bubbles are 
shown in the Fig. 8 predictions; this is because the flow is assumed symmetrical about the plane of 
symmetry midway between the vortex filament breakpoints.  This is not an absolute requirement of the 
analysis presented in this paper; asymmetrical distributions can be accommodated in this analysis such that 
one, or two, or more vortex breakdown bubbles may be simulated in the vortical flow.    
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Fig. 8.   Representative Vortex Breakdown Bubble Time Evolution 
 
 

C. Influence of Finite Segments, i.e. “Seeds,” of Negative Vorticity on Reconnection and Breakdown 
 
Reference 10 and 11 performed initial analytical investigations into vortex filament reconnection and 

breakdown phenomena.   In both references, inner cores of negative vorticity, as represented by a “dual 
core” initial vorticity distribution was sufficient to instigate vortex bubble formation and time evolution.  
However, this “dual core” vortex model had significant limitations to its utility.  Many of these limitations 
have been rectified by the work presented in this paper.   However, so far, the study of the influence of 
negative vorticity in the vortex core on axisymmetric vortex breakdown bubble formation has assumed that 
this negative vorticity is (semi-) infinite in span along the filament.  This section of the paper will now 
study cases where either multiple cuts/breaks occur along the vortex filament or, alternatively, where 
negative vorticity is captured/embedded in finite span “seeds” inside vortex inner core.  Such cases of finite 
regions of negative vorticity, near the vortex filament breakpoints, is likely to be more representative of 
physical realistic flow wherein the negative vorticity is generated, and entrained by the vortex filaments, as 
the vortex interacts with the boundary layer of a solid body/surface during the cutting process itself.  Figure 
9 illustrates the trends with respect to the resulting enstrophy contours of the axial “span” of the inner core 
negative vorticity region(s).  In particular the creation of radial and azimuthal vorticity at the second wave 
front boundary, stemming from the “finiteness” of the axial span of the inner-core negative vorticity, can be 
clearly seen in Fig. 9.    
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Fig. 9.  Enstrophy Contours as a Function of Finite Span of Negative Vorticity “Seeds” in the Inner 
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It is reasonable to consider the question whether or not such “seeds” of negative vorticity, generated 

during a body-vortex-interaction, is sufficient to initiate formation of vortex breakdown phenomena.  It is 
anticipated that the following general constraint applies – i.e. 

! 

bi " ai # VPtlim  where 

! 

tlim  can be 
numerically defined in the same manner as the time limits noted in Fig. 3 -- then vortex breakdown 
axisymmetric bubble formation and dissipation is essentially indistinguishable from that observed and 
noted earlier for semi-infinite expanses of negative vorticity in vortex cores.   If the span of the region of 
negative vorticity is below this limit, i.e. 

! 

bi " ai < VPtlim , such that 

! 

bi " ai << rc0A , then the persistence, 
even the existence, of vortex breakdown bubbles is significantly curtailed.   This is clearly exemplified in 
Fig. 10 which reveals that the vortex breakdown bubble overall size, and geometry, is fairly constant for 
large spans of inner-core negative vorticity; however, as the finite span of the negative vorticity drops 
below a critical limit then the breakdown bubble begins to collapse prior to nominal nondimensional time 
limits shown in Fig. 3.  Further, it is important to note that the “finiteness” of the axial span of the inner-
core negative vorticity can also have an influence on the vortex core envelope, as well, as evidenced by 
comparing the vortex core envelope of Fig. 10a-b with the contour shown in Fig. 10c.   The Fig. 10c core 
envelope varies to a greater degree for small or localized “seeds” of negative vorticity as compared to 
larger, or semi-infinite, distributions of negative vorticity.    
 

 



XM YM, ZM,( ) XM1 YM1, ZM1,( ),

 (a) 

XM YM, ZM,( ) XM1 YM1, ZM1,( ),

 (b) 

XM YM, ZM,( ) XM1 YM1, ZM1,( ),

 (c) 
 

Fig. 10.  Vortex Core and Breakdown Bubble Envelopes as a Function of Finite Span of Negative 
Vorticity “Seeds” in the Inner Core ( 05.0=
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D. Approximate Influence of “Post-Cut” Variable Vortex Core Size 
 
Experimental and computational observations, e.g. from Ref. 8, have revealed that the vortex filament 

core size is not constant, subsequent to being cut by a solid body, and varies along the span of the filament 
for columnar vortices having nonzero axial velocity in the vortex core prior to cutting.  The upstream 
portion of the filament undergoes an expansion of the core (due to the axial flow being decelerated to zero 
during its cutting by the solid body) while the downstream portion of the core contract (both the expansion 
and contraction primarily occurs in the immediate vicinity of the cut).   

 
Figure 11 is the vortex core evolution, with time, emulating the initial variable core size distributions 

observed, e.g. Ref. 8, for orthogonal blade cutting of vortices with nonzero axial flow.  As this is only an 
approximate simulation/emulation of the experimentally observed vortex core distributions during 
orthogonal body-vortex interaction, only a qualitative appreciation of the time evolution of such vortices 
can be made.  Nonetheless, even with this simple example, there is good general agreement with the overall 
flow features observed experimentally.   
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Fig. 11.   Time Evolution of an Initially Variable Core Size Axial Distribution: (a) 05.0=
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Finally, it should be noted that this analytical work could also be applied to cases where not only “ideal 

cuts” (where there is no axial vorticity in the intermediate region between breakpoints) have been modeled 
but non-ideal filament “breaks” (where there is still non-negligible axial vorticity in the intermediate 
region) as well.  Such analytical work, though not fundamentally changing the results presented, would 
represent a more physically realistic flow process.   

 
 
 



E. Influence of Reynolds Number 
 
The results in this paper are for the most part presented for low vortex Reynolds numbers, typically 

Re=50.  In actuality, the columnar vortex and vortex reconnection solutions presented exhibit mostly 
independence with respect to Reynolds number, with the unique exception of the wave front boundary 
propagation velocity and, by extension, each boundary’s spatial location.  This, in turn, has a modest effect 
on the geometry of the vortex breakdown bubbles (and internal recirculation cell).    Figure 12a-c presents 
instantaneous stream function contours, in the immediate vicinity of a vortex filament breakpoint, as a 
function of vortex Reynolds number (Re=100, 500, and 1000).  Figure 12d illustrates the influence of 
employing large values of turbulent effective viscosity (

! 

veff = "# ) in making the stream function 
predictions for higher Reynolds numbers; the net effect of the turbulent viscosity is to “age” the vortex with 
respect to the purely laminar vortex in the overall progression of the reconnection process.   Figure 12e 
presented at an equivalent “effective” nondimensional time (

! 

teff
•

" # eff t rc0A
2 ) validates, though, that 

turbulent viscosity -- as to be expected given the previously note independence of the solution with respect 
to Reynolds number -- does not fundamentally alter either the character or orderly progression of the vortex 
reconnection process as compared to the laminar flow viscosity values.  Employing turbulent viscosity will 
not, therefore, result in the manifestation of the large conical turbulent vortex breakdown “bubbles” 
observed in Ref. 12, for example.  (The work of Ref. 12 would suggest that non-axisymmetric formulations 
of the Navier-Stokes or Helmholtz equations are required, to capture spiral modes/instabilities, to model the 
large turbulent conical vortex breakdown structures observed in that work.  Such spiral modes, and 
associated phenomena, cannot be predicted with the axisymmetric solution presented in this paper.)   
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The Reynolds number observations, noted above, have to be moderated when it comes to considering 

finite spans, versus semi-infinite distributions as shown in Fig. 13, of inner-core negative vorticity.   As 
seen in Fig. 12, the vortex breakdown bubble axial expanse is somewhat “open-ended” with respect to 
Reynolds number for semi-infinite inner-core negative vorticity.  In other words, for the semi-infinite 
negative vorticity distribution case, the bubble length increases without limit with increasing vortex 
Reynolds number.   However, this does not hold for finite spans of inner-core negative vorticity.   Under 
these circumstances, the bubble length is constrained, i.e. self-limiting, by the appearance of the second 
wave front boundary, to constrained to some maximum length that directly corresponds to the initial span 
of the inner-core negative vorticity region.  This can be clearly seen in Fig. 13a-b where instantaneous 
stream function contours are presented for two different negative vorticity distributions.   This result is a 



particularly crucial one, as empirical observations of axisymmetric vortex breakdown bubbles tend to 
consist mostly low fineness ratio (length-to-diameter) bubbles.    
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Fig. 13.  Influence of Finite-Span, a.k.a “Seeds,” of Negative Vorticity versus Semi-Infinite 
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F. Expanded Comments Related to Solution Approximations 
 
There are four primary approximations inherent in the length scale factor methodology, in general, and 

the vortex reconnection solution, in particular.  First, the idealization of the vortex reconnection problem as 
to being perfectly “cut,” such that 

! 

"
r#$

= 0  at 

! 

t = 0 for the intermediate regions between breakpoints, is 
in itself an approximation.  In reality, such an “ideal cut,” with corresponding total elimination of vorticity 
in the intermediate region prior to 

! 

t = 0, is not possible.  (Though no examples are provided in this paper, 
because of considerations with respect to brevity, the outlined analysis is capable of simulating non-ideal 
cuts, a.k.a vortex “breaks,” wherein 

! 

"
r#$

% 0  within the intermediate region(s), though, 

! 

" r#$
z%0

<< " r#$

z#$
.)  Second, an inherent outcome of the length scale factor for a fully three-dimensional 

problem is that, in addition to the fundamental assumptions of the methodology that 
  

! 

vz = "l#z  and 

  

! 

vr = "l#r , it is also ideally the case that 

! 

v" #$" .  In an approximate, but not exact sense, this 
proportionality is observed in the analytical solution.  Third, the analytical expressions for all three vorticity 
components, and not just the axial vorticity, has to ideally satisfy the unsteady heat conduction equation 
cast in terms of each respective vorticity component, or, alternatively, an “infinite (large) Reynolds 
number” assumption has to be applied.  Fourth, it should be noted there is no a priori characterization of 
the geometry of the wave front boundaries.  A planar-wave type geometry for the wave front boundaries is 
assumed in this paper though alternate realizations might be more valid.  Further, the propagation velocity 
of the wave boundaries is based on a simple approximate formula, rather than some exact treatment.   
 

The impact of these approximations, to a first order, can be estimated.  A “residual error” function will 
now be defined to help characterize the relative level of approximation in the vortex reconnection solution 
– i.e. 

! 

" # D$ Dt % $ &'( )V %('2$ .  If the solution were exact for all conditions and regions within the 
flow then 

! 

" = 0 .   In fact, one component of the “residual error” function is indeed identically equal to zero 
as a consequence of the length scale factor methodology: i.e. 

! 

"z # 0.  However, as illustrated in Fig. 14a-d, 



the other two components, 

! 

"#  and 

! 

"r , are not identically zero for all conditions and vortical flow regions 
for the vortex reconnection solution, as typified by the “parabolic core,” 

! 

"A = 0 , model.  For both cases, 
the nondimensionalized values for 

! 

"#  and 

! 

"r  exhibit non-negligible nonzero values near the vortex 
centerline in the intermediate region for small values of nondimensional time and low vortex Reynolds 
numbers.   In particular, 

! 

"# , derived from the azimuthal vorticity equation, exhibits by far the largest 
residual error values (by at least an order of magnitude near the vortex centerline in the intermediate region 
between breakpoints).  This is almost exclusively the case because the 

! 

"#$ "r( ) r  term in the Laplacian 
operator is not identically canceled out by the contribution of the other terms at the vortex axis, thus 
exhibiting a singularity at 

! 

r = 0 with the “parabolic core” vortex reconnection solution -- and, by extension, 
the rest of the family of vortices presented in this paper.    

 
As Reynolds number increases the residual error correspondingly decreases (e.g. Fig. 14c-d) though 

areas of residual error other than the localized region near the vortex centerline now become more obvious.   
The vortex reconnection solution may, perhaps, be considered a “large Reynolds number” solution (though 
clearly not inviscid) even though imposing a “large Reynolds number” assumption was not explicit in the 
solution derivation.  This perhaps best evidenced by the (for the most part) Reynolds number independence 
exhibited in the vortex reconnection solutions (with the key exception being the wave front boundary 
location and propagation velocity); otherwise, Reynolds number merely affects the spatiotemporal scaling 
of the problem and not the exhibited phenomenology itself.   Additionally, as nondimensional time 
increases the observed residual error decreases as seen in Fig. 14e-f.   
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Fig. 14. Approximation with respect to Viscous Helmholtz Equation: (a) Residual Error for 
Azimuthal Vorticity, 
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"# , and (b) Residual Error for Radial Vorticity, 
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t
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It is important to note that in the above discussion that “residual error” is not synonymous with absolute 

error.  The residual error results merely reflect where, when, and how the derived analytical solutions do 
not exactly satisfy the Helmholtz equations.   The residual error estimates do not, however, quantify the 
accuracy of the approximation.   For example, it is quite conceivable that a relatively small inaccuracy in 
predicting 

! 

"#  or 

! 

"r  at the vortex centerline can potentially result in a large residual error estimate if the 

! 

"#$ "r( ) r  and 

! 

"#r "r( ) r  contributions are not exactly canceled out by the collective contributions from 
the vorticity time derivatives and the other Laplacian operator terms.  Having performed this initial 
assessment of the level of approximation inherent in the derived solution, it bears repeating that the analysis 
outlined in this paper, though of approximate nature, is nonetheless of great utility in understanding vortical 
flow phenomena as diverse as vortex breakdown and vortex reconnection.    

 
 
 

Concluding Remarks 
 
A new family of laminar vortices has been analytically derived.  These vortices can be studied as either 

columnar vortices or vortex filaments undergoing vortex reconnection and breakdown.  The columnar 
vortex solutions represent exact solutions for the Helmholtz vorticity equations.  The vortex reconnection 
solutions, in turn, are only approximate in nature, but provide fully three-dimensional, though 
axisymmetric, analytic insight into very complex flow phenomenon.   In particular, the presence of 
negative axial vorticity (both in terms of strength and distribution) in the inner core of vortex filaments has 
a profound effect on the manifestation and persistence of axisymmetric vortex breakdown bubbles in the 
early stages of vortex reconnection, as well as influencing the bubble geometry.  Correspondingly the 
influence of vortex Reynolds number, including the application of turbulent effective viscosity to simulate 
mean turbulent flow, is investigated as to the vortex reconnection phenomenon.  As predicted by the 
analysis, the Reynolds number primarily influences the spatiotemporal scaling of the flow but has little 
effect on the general types of flow behavior manifested.   In this regards, the vortex solutions exhibit a large 
degree of Reynolds number independence, thereby lending additional support to the supposition that the 

E1 E2



derived laminar analysis results can also potentially provide insight into turbulent vortical flow through 
selective application of turbulent effective viscosity.    

 
The presented analytical work can be readily extended to consider active flow control approaches 

whereby the primary vortical flow is disrupted in a periodic or pulsed manner by either vortex “cutting” or 
injection/entrainment of negative vorticity into the vortex inner core.   Such active flow control approaches 
to vortex modification for rotary- and fixed-wing applications has been long sought after, but not yet 
robustly demonstrated, primarily because of the need for an improved understanding of the fundamental 
physics of vortical flow phenomenon.    
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Appendix – Finite-Core Line Sources 
 

Reference 13 summarized the exact solution for a finite (spherical) volume source, Eq. 15.  Note that 
the parameter, 

! 

ro , is the spherical source terms radius.  This parameter is related to the finite-core vortex 
filament initial core radius, 

! 

rc0 , through consideration of the initial velocity and vorticity distributions, as 
detailed later.   
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This finite volume source model is now applied to the following integral equation to define the 

incremental vorticity contribution, 

! 

"#z $ ,ro ,a,b( ) , for a finite (or semi-infinite) span of finite-core line 
source.   
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"#z $ ,ro ,a,b,r,z, t( ) = #z Finite Volume

Source
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This becomes  
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The integral terms in Eq. 17 do not appear initially to be analytically tractable (except for the special 

case of defining the initial, 

! 

t = 0, vorticity distribution).  Stepping back a bit with respect to the radial 
integration of the finite-volume core source, and reconsidering the arrangement of terms  
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Expanding the exponential terms and rearranging gives  
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Noting that the definition of the hyperbolic sine function is 

! 

sinhu = e
u
" e

"u( ) 2 ; therefore, the above 

can be recast as  
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Note that 

! 

sinh cx( ) = "cx 2 # I+1 2 cx( )  (see, e.g. Ref. 14).  The emergence of Bessel functions in the above 
equation based on cylindrical/polar coordinates is not unexpected.   It is well known that Bessel functions 
are particular solutions of the unsteady heat conduction equation in cylindrical coordinates.    

 
A series approach will now be taken to derive the solution of the above equation.  Uniform 

convergence will be assumed for the series such that term-by-term integration can be performed.   Given 
the series definition of the hyperbolic sine function  
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Note the above limit of application of the series representation of the hyperbolic sine function.  When 

! 

t = 0 
then identically 

! 

x ="  thus approaching the limit of application of this series representation of the 
hyperbolic sine function, i.e. 

! 

x <" ; this is the principal reason why the resulting flow solution is semi-
convergent as 

! 

t" 0 .  Dealing with this issue of how to define the initial vorticity and velocity 
distributions is discussed later in the Appendix; not unexpectedly, it requires solving the axial vorticity 
expression, at 

! 

t = 0, prior to the hyperbolic sine series representation substitution.   
 

Substituting the above series expression into the above integral equation eliminates the square-root 
terms  
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 (22) 
 

Recasting the above in the form of a new function (basically a modification of the series function(s) 
defined in Ref. 10) gives  
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Where  
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Noting the following integration formula from Ref. 15  
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Note, from Ref. 15, the notation  
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This integral formula applied to the 

! 

D0 ro ,a,b,r,z, t( )  expression yields  
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Where  
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Recasting Eq. 27 slightly, and making the substitution 

! 

x = z " z*  and 

! 

dz* = "dx  with the associated change 
in integration limits, gives  
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Series expansion of the nth power polynomial term needs to be performed.  This is accomplished by use of 
the Binomial Theorem (see e.g. Ref. 14).   
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Where the binomial coefficients are defined by the relationship  
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The Binomial Theorem expansion applied to the vorticity function yields  
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Proceeding with the integration of the above with respect to 
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x  gives  
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Where the second function, 

! 

D01 n,",r,z, t( ) , is defined as  
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Note that, in the above, the convention is assumed wherein 
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Next, defining a new function, 

! 

D1 n,",# ,z, t( ) , where  
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Substituting for 

! 

D01 n,",# ,z, t( ) , Eq. 33, in the expression for 

! 

D1 n,",# ,z, t( ) , Eq. 34, gives  
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Noting the following integral formula from Ref. 15  
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Using the above integration formula, the function 
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D1 n,",# ,z, t( ) , Eq. 35a, becomes  
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The tangential velocity distribution can be derived from the axisymmetric flow vorticity divergence 
relationship  
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Which implies the first-order ordinary differential equation  
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Where, for this particular case,  
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The general solution of this differential equation is  
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Employing the function, 
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D1 n,",# ,z, t( ) , Eq. 37, the incremental tangential velocity can be expressed  
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Now noting that the integration constant, C, is derived by the boundary constraint that 

! 

v" = 0  at 
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r = 0, 
which in turn implies that 
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The radial vorticity component can be found from the following relationship (noting θ-symmetry)  
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Which, in turn, implies that the incremental radial vorticity can be derived from  
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Where the above expression for the incremental radial vorticity incorporates two new functions   
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Now, given the standard handbook formula  
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And making the indicated substitution, Eq. 35b into Eq. 47b, yields  
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Note that in the above (and subsequent analysis), the following convention holds: 
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An intermediate function, 

! 

h " ,ro,a,b,r,z, t( ) , leading to the estimation of the azimuthal vorticity will now 
be derived.  Given the axisymmetric definition of the azimuthal vorticity  
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The above relationship implies the following function definition  
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Through “localized” application of length scale factors, and summation of incremental contributions to the 
azimuthal vorticity, the following result can be established  
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Therefore, the following initial derivative is derived to define the intermediate function 
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Where  
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Such that  
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Finally, the second derivative contributing to the intermediate function, 

! 

h " ,ro,a,b,r,z, t( ) , can be derived 
as follows  
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Which taken altogether gives the following expression for the intermediate function, 

! 

h " ,ro,a,b,r,z, t( )  
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This concludes the analytical work related to the use of finite-volume spherical source terms to derive 
incremental velocity and vorticity expressions for the arbitrary span vortex filament segments.   

 



Expressions relating the spherical finite-volume source radii, 

! 

roA  and 

! 

"AroA , to the vortex core radius, 

! 

rc0 , where as defined earlier for the upstream far-field vortex geometry 

! 

rc0 = rc0A , will now be derived.  
The vortex filament reconnection solution documented in the main body of paper poses some unique 
challenges.   First of all, the series solutions derived for the vortex vorticity and velocities appear to be 
semi-convergent in the sense that the initial vorticity and velocity distributions (

! 

t
•

= 0 ) cannot be directly 
estimated.  (Depending upon where the series are truncated, and the estimation tolerances used in the 
numerical algorithms employed, the earliest time demonstrated where an accurate solution has been 
estimated is 

! 

t
•
" 0.02# 0.03 – close but not quite good enough.)  An alternate approach to solve for these 

initial vorticity and velocity distributions needs to be defined.  Second, there has not been derived, yet, an 
explicit relationship/dependence of the finite-volume spherical source radii, 

! 

roA  and 

! 

"AroA , (used to 
define the initial axial vorticity) and the initial tangential velocity profile core radius, 

! 

rc0 .  Without such an 
explicit relationship the proper spatiotemporal scaling of the flow cannot be completed.  The following 
analysis seeks to address both analytical issues.   

 
An alternate approach, examining the asymptotic analytical behavior of the axial vorticity and tangential 

velocity equations, will now be outlined.  Without any loss of generality, for reasons of both simplicity and 
brevity, the columnar vortex version of Eq. 17 will be used for the subsequent analysis.   
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 (58) 
 
Given Eq. 58, an asymptotic expression for the axial vorticity function at time equal to zero, 

! 

"z t#0
 can be 

defined.  In particular, it will be formulated so as to treat the approach to the limit 

! 

t" 0  as a two-step 

process (with the inner limit approached first).  Further, making the substitution 

! 

x " roA
2
# r

2  and 

! 

x1 " #A
2
roA
2 $ r2 , Eq. 58 can be reduced to  
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Which, completing the integration with respect to 

! 

z*  and recognizing the implied maximum value of 

! 

r  
with respect to 

! 

roA  and 

! 

"AroA , gives  
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 (60) 
 
Note that the above integration constants -- 

! 

C1 , 

! 

C2 , 

! 

C3, and 

! 

C4  -- are constants with respect to 

! 

z* and 
not necessarily with respect to other parameters, i.e. specifically it is anticipated that 

! 

C1"C2 "C3"C4 " f t( ) .   It is assumed that the following constraints apply: 

! 

C2 " C1, 

! 

C4 " C3, and 
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C4 "C3"C2 "C1"1 t .  From a convenience perspective, let 

! 

C1 = "C2 = "c1 # $t  and 

! 

C3 = "C4 = "c2 # $t , where 

! 

c1  and 

! 

c2  are resultant constants that will be derived later.  As will be seen, 
there is no loss of generality by making this substitution.  The above equation can now be re-expressed as 
follows  
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 (61) 
 
Where the resultant constants, 

! 

c1  and 

! 

c2 , will be derived from the tangential velocity constraints and 
conditions.   
 

Considering next the vortex circulation, 

! 

"# , which is assumed constant for all flow in the upstream and 
downstream far-field (i.e. along the semi-infinite segments of the vortex filament), a relationship 
interrelating the vortex segment circulation strengths can be defined.   
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Or, for the above initial vorticity distribution, the following holds  
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 (63) 
Additionally  
 



! 

"A#A =
3"A#A

$AroA( )
3

c2

2
r
2 %

1

3
$A
2
roA
2 % r2( )

3& 
' 
( 

) ( 

* 
+ 
( 

, ( 
0

$AroA

 

 (64) 
 
Applying the integration limits to Eqs. 63 and 64 and simplifying yields  
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And 
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c2 = 0  
 (65a-b) 
 

Equation 65a is subject to the constraint that for all 

! 

"A , within the range of 

! 

0 " #A " 1, if 

! 

"A = 0  then 
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"# "A = 1.   Therefore, the following holds  
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And so, given Eq. 65b, therefore  
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An ordinary differential equation can be defined for the tangential velocity in terms of the axial 
vorticity.    
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Which has the general solution  
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Where, recognizing the piecewise nature of the resulting tangential velocity profile  
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Given the boundary condition 

! 

v" t#0
= 0  at 

! 

r = 0, then the constant, C, must be given by 

! 

C = 1+ "A( )#A 2$ .  The initial tangential velocity distribution, therefore, can be expressed as  
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 (70) 
 
The constraint is now imposed that there are no velocity jumps at 

! 

r = roA .  Therefore, given this 
constraint and Eq. 69c-d, then 

! 

c1 = 0 , which is consistent with previous results.   
 
Differentiating the above expression in terms of the radial coordinate and noting that peak tangential 

velocity occurs when 

! 

dv" dr = 0 , then an expression for the initial vortex core size, 

! 

rc0A , in terms of the 
finite-volume spherical source radius, 

! 

roA , can be derived.   Noting that, for most cases, 

! 

rc0A  lies 
somewhere within the range 

! 

"AroA # rc0A # roA , then the following holds   
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Or, substituting for 

! 

c1  and simplifying, gives  
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Equation 72 can be solved numerically yielding the approximate result for the range 

! 

"1# $A < 0.4   
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roA " 1+ 0.075u 1+ #A( ) 1+ #A( )
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& ' 
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 (73) 
 

For the special case of 

! 

"A = 0 , the above expression yields 

! 

roA " 1.075rc0A , which is the parabolic 
core result of Ref. 10.   This result also substantiates why, for 

! 

"A << 0, the “dual-core” vortex model 
presented in Ref. 10 and 11 could successfully employ the artifice that 

! 

roA = rc0A  in its formulation and 
solution, even though its source term vorticity distribution deviates significantly from that of a finite 
volume spherical source (on which it was originally based, at very small values of time) and, therefore, 
despite 

! 

roA  being a somewhat meaningless parameter in its original context.  Note that there is a singularity 
at 

! 

"A # 0.4  for Eq. 72; the approximate expression, Eq. 73, does not capture this singularity.  In short, Eq. 
72 is not valid for specifying the interrelationship between 

! 

roA  and 

! 

rc0A  if values of 

! 

"A # 0.4  are used.   
 

Given the above work describing the initial vorticity and velocity distributions, the condition for 
negative vorticity in the inner core of the vortex is given by the inequality relationship  
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Therefore, negative vorticity in the inner core of the vortex filament will be manifested, for some 

nonzero period of time, if the following condition is met.    
 

! 

"A # $%A
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 (75) 
 
However, as a practical matter, it is also important to define a limit between 

! 

"A  and 

! 

"A  that prohibits the 
inner core swirling flow to dominate the outer core flow.  This can be established by the two equations  
 

! 

max v"( ) r#$AroA
r=rlim

# max v"( )$AroA <r#roA
r=rc0A

 

 

! 

"v#

"r t$0
r=rlim

= 0  

 (76a-b) 
 
The result is a set of two nonlinear equations that need to be simultaneously solved for numerically.   An 
approximate solution is given by  
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The wave front boundary, 

! 

zw , will now be derived.  The wave front boundary is a somewhat 
idealized, but essential, flow feature for the vortex reconnection problem.  As the initial conditions for the 
vortex reconnection flow problem include only distributions of nonzero axial vorticity where, further, 
intentionally so, the radial and azimuthal vorticity is initially zero.   The subsequent manifestation (

! 

t > 0) 
of nonzero radial and azimuthal vorticity in the flow field can only be the result of creation of vorticity at 
the wave front boundaries due to the discontinuity, or even steep gradients in the non-ideal sense, of the 
axial flow, with respect to the axial coordinate, at the boundary.   No moving boundary, no continuous 
creation of radial and azimuthal vorticity, as per the Lagrange theorem regarding vorticity remaining at 
zero throughout the flow field, if initially at zero, without surfaces/boundaries to create vorticity, e.g. Ref. 
16.  Consequently, without the wave front boundary, there could not, ultimately, be cross-cancellation of 
the convective acceleration and vortex-stretching terms in the axial vorticity Helmholtz equation.  
Therefore, the wave front boundaries are not unnecessary, mathematical only, artifices; their existence is 
essential.   However, the exact nature of the wave front boundaries, and their propagation speed, is difficult 
to precisely define.   

 
As presented in Ref. 10 and 11, the wave front boundary is assumed to be a function of time and the 

axial coordinate; therefore the boundary could be analogously thought of as a complementary set of two 
plane waves (for two breakpoints in close proximity to each other) traveling outward from the initial vortex 
filament breakpoints.  The approximate expression for the wave front propagation velocity, 

! 

v p , as 
originally employed in Refs. 10-11, is  
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Which yielded, in turn, for the dual-core vortex model, and by extension the other vortex core models, the 
result that the wave front propagation velocity was approximately constant, thereby simplifying the 
definition of the boundary location in the velocity and vorticity expressions.  This expression, based on the 
vortex far-field condition and assuming a single cut (two breakpoints), is  
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The resulting planar-wave-like wave front boundary – for a “wave front” propagating away from each 
breakpoint for each vortex filament segment  -- is then given by the expression   
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 (80) 
 
Where 

! 

rc0
i

 can be derived by inverting Eq. 72, or Eq. 73, to solve for the local vortex core size; e.g.  
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Where 

! 

"A
i

= # i #A , if  

! 

" i "A # 1, and 

! 

"A
i

= 0  for 

! 

" i "A = 1. 



 
Though the conceptual simplicity of the above result is gratifying, it suffers from a number of 

limitations.  First of all, the definition’s requirement that 

! 

z "#  implies that 

! 

t >> 0 .  Indeed, though the 
wave front propagation velocity does asymptotically approach a constant speed, at very small values of 
time the propagation velocity is not constant.  Consequently, at very small values of time, the wave front 
boundary is over-predicted if constant wave front propagation speed is assumed.   Second, the above 
definition of the wave front propagation speed, suffers from trying to arrive at an equivalent “slug flow” 
velocity, i.e. 

! 

vz equiv
= constant  for 

! 

r " rc0  and 

! 

vz equiv
= 0  when 

! 

r > rc0 .   Third, for vortex filament 

segments with positive circulation strength, the wave front propagation velocity is equivalent to this quasi-
slug-flow velocity.  For vortex segments (or inner vortex cores with negative axial vorticity) with negative 
circulation strength this analogy breaks down.  In actuality, the wave front boundary, in this case, does not 
propagate (necessarily) along with the axial flow but instead progresses with the advancing localized 
region(s) where there is formation/creation of nonzero radial and azimuthal vorticity (which is initially 
assumed zero).  Case in point, with negative circulation strength, the axial flow is in fact in the opposite 
direction of the wave front boundary propagation.)  Nonetheless, even for this case, the absolute value of 
the propagation rate is assumed to be equal to that given by Eq. 79.     

 


